线程池原理
创始人
2025-05-29 06:32:03
0

文章目录

  • 1 使用线程池的理由
  • 2 线程池原理
    • 2.1 ThreadPoolExecutor提供的构造方法
    • 2.2 ThreadPoolExecutor的策略
    • 2.3 线程池主要的任务处理流程
    • 2.4 ThreadPoolExecutor如何做到线程复用的?
  • 3 四种常见的线程池
    • 3.1 newCachedThreadPool
    • 3.2 newFixedThreadPool
    • 3.3 newSingleThreadExecutor
    • 3.4 12.3.4 newScheduledThreadPool

1 使用线程池的理由

  1. 复用线程资源,避免频繁的创建和销毁线程
  2. 控制并发数量, 并发数量过多,会导致资源消耗过多,造成服务器崩溃
  3. 可以对线程做统一管理

2 线程池原理

Java线程池的顶级接口是Executor接口,ThreadPoolExecutor是实现这个接口的实现类

2.1 ThreadPoolExecutor提供的构造方法

// 五个参数的构造函数
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue workQueue)// 六个参数的构造函数-1
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue workQueue,ThreadFactory threadFactory)// 六个参数的构造函数-2
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue workQueue,RejectedExecutionHandler handler)// 七个参数的构造函数
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler)

参数概念:

  • int corePoolSize: 该线程池中核心线程数最大值

核心线程:线程池中有两类线程,核心线程和非核心线程。核心线程默认情况下会一直存在于线程池中,即使这个核心线程什么都不干(铁饭碗),而非核心线程如果长时间的闲置,就会被销毁(临时工)。

  • int maximumPoolSize:该线程池中线程总数最大值 。

该值等于核心线程数量 + 非核心线程数量。

  • long keepAliveTime:非核心线程闲置超时时长。

非核心线程如果处于闲置状态超过该值,就会被销毁。如果设置allowCoreThreadTimeOut(true),则会也作用于核心线程。

  • TimeUnit unit:keepAliveTime的单位。
  • BlockingQueue workQueue:阻塞队列,维护着等待执行的Runnable任务对象。
  • ThreadFactory threadFactory

创建线程的工厂 ,用于批量创建线程,统一在创建线程时设置一些参数,如是否守护线程、线程的优先级等。如果不指定,会新建一个默认的线程工厂。

2.2 ThreadPoolExecutor的策略

线程池本身有一个调度线程,这个线程就是用于管理布控整个线程池里的各种任务和事务,例如创建线程、销毁线程、任务队列管理、线程队列管理等等。

线程池也有自己的状态ThreadPoolExecutor类中使用了一些final int常量变量来表示线程池的状态 ,分别为RUNNING、SHUTDOWN、STOP、TIDYING 、TERMINATED

// runState is stored in the high-order bits
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;
  • 线程池创建后处于RUNNING状态。
  • 调用shutdown()方法后处于SHUTDOWN状态,线程池不能接受新的任务,清除一些空闲worker,不会等待阻塞队列的任务完成。
  • 调用shutdownNow()方法后处于STOP状态,线程池不能接受新的任务,中断所有线程,阻塞队列中没有被执行的任务全部丢弃。此时,poolsize=0,阻塞队列的size也为0。
  • 当所有的任务已终止,ctl记录的”任务数量”为0,线程池会变为TIDYING状态。接着会执行terminated()函数。
  • 线程池处在TIDYING状态时,执行完terminated()方法之后,就会由 TIDYING -> TERMINATED, 线程池被设置为TERMINATED状态。

2.3 线程池主要的任务处理流程

处理任务的核心方法是execute,我们看看 JDK 1.8 源码中ThreadPoolExecutor是如何处理线程任务的:

// JDK 1.8 
public void execute(Runnable command) {if (command == null)throw new NullPointerException();   int c = ctl.get();// 1.当前线程数小于corePoolSize,则调用addWorker创建核心线程执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// 2.如果不小于corePoolSize,则将任务添加到workQueue队列。if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 2.1 如果isRunning返回false(状态检查),则remove这个任务,然后执行拒绝策略。if (! isRunning(recheck) && remove(command))reject(command);// 2.2 线程池处于running状态,但是没有线程,则创建线程else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 3.如果放入workQueue失败,则创建非核心线程执行任务,// 如果这时创建非核心线程失败(当前线程总数不小于maximumPoolSize时),就会执行拒绝策略。else if (!addWorker(command, false))reject(command);
}

ctl.get()是获取线程池状态,用int类型表示。第二步中,入队前进行了一次isRunning判断,入队之后,又进行了一次isRunning判断。

为什么要二次检查线程池的状态?
在多线程的环境下,线程池的状态是时刻发生变化的。很有可能刚获取线程池状态后线程池状态就改变了。判断是否将command加入workqueue是线程池之前的状态。倘若没有二次检查,万一线程池处于非RUNNING状态(在多线程环境下很有可能发生),那么command永远不会执行。

总结一下处理流程:

  1. 线程总数量 < corePoolSize,无论线程是否空闲,都会新建一个核心线程执行任务(让核心线程数量快速达到corePoolSize,在核心线程数量 < corePoolSize时)。注意,这一步需要获得全局锁。
  2. 线程总数量 >= corePoolSize时,新来的线程任务会进入任务队列中等待,然后空闲的核心线程会依次去缓存队列中取任务来执行(体现了线程复用)。
  3. 当缓存队列满了,说明这个时候任务已经多到爆棚,需要一些“临时工”来执行这些任务了。于是会创建非核心线程去执行这个任务。注意,这一步需要获得全局锁
  4. 缓存队列满了, 且总线程数达到了maximumPoolSize,则会采取上面提到的拒绝策略进行处理。

在这里插入图片描述

2.4 ThreadPoolExecutor如何做到线程复用的?

ThreadPoolExecutor在创建线程时,会将线程封装成工作线程worker,并放入工作线程组中,然后这个worker反复从阻塞队列中拿任务去执行。话不多说,我们继续看看源码(一定要仔细看,前后有联系)

这里的addWorker方法是在上面提到的execute方法里面调用的,先看看上半部分:

// ThreadPoolExecutor.addWorker方法源码上半部分
private boolean addWorker(Runnable firstTask, boolean core) {retry:for (;;) {int c = ctl.get();int rs = runStateOf(c);// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;for (;;) {int wc = workerCountOf(c);if (wc >= CAPACITY ||// 1.如果core是ture,证明需要创建的线程为核心线程,则先判断当前线程是否大于核心线程// 如果core是false,证明需要创建的是非核心线程,则先判断当前线程数是否大于总线程数// 如果不小于,则返回falsewc >= (core ? corePoolSize : maximumPoolSize))return false;if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get();  // Re-read ctlif (runStateOf(c) != rs)continue retry;// else CAS failed due to workerCount change; retry inner loop}}

上半部分主要是判断线程数量是否超出阈值,超过了就返回false。我们继续看下半部分:

// ThreadPoolExecutor.addWorker方法源码下半部分boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {// 1.创建一个worker对象w = new Worker(firstTask);// 2.实例化一个Thread对象final Thread t = w.thread;if (t != null) {// 3.线程池全局锁final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {if (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();workers.add(w);int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;}} finally {mainLock.unlock();}if (workerAdded) {// 4.启动这个线程t.start();workerStarted = true;}}} finally {if (! workerStarted)addWorkerFailed(w);}return workerStarted;
}

创建worker对象,并初始化一个Thread对象,然后启动这个线程对象。

我们接着看看Worker类,仅展示部分源码:

// Worker类部分源码
private final class Worker extends AbstractQueuedSynchronizer implements Runnable{final Thread thread;Runnable firstTask;Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;this.thread = getThreadFactory().newThread(this);}public void run() {runWorker(this);}//其余代码略...
}

Worker类实现了Runnable接口,所以Worker也是一个线程任务。在构造方法中,创建了一个线程,线程的任务就是自己。故addWorker方法调用addWorker方法源码下半部分中的第4步t.start,会触发Worker类的run方法被JVM调用。

我们再看看runWorker的逻辑:

// Worker.runWorker方法源代码
final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 1.线程启动之后,通过unlock方法释放锁w.unlock(); // allow interruptsboolean completedAbruptly = true;try {// 2.Worker执行firstTask或从workQueue中获取任务,如果getTask方法不返回null,循环不退出while (task != null || (task = getTask()) != null) {// 2.1进行加锁操作,保证thread不被其他线程中断(除非线程池被中断)w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted.  This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 2.2检查线程池状态,倘若线程池处于中断状态,当前线程将中断。 if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();try {// 2.3执行beforeExecute beforeExecute(wt, task);Throwable thrown = null;try {// 2.4执行任务task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {// 2.5执行afterExecute方法 afterExecute(task, thrown);}} finally {task = null;w.completedTasks++;// 2.6解锁操作w.unlock();}}completedAbruptly = false;} finally {processWorkerExit(w, completedAbruptly);}
}

首先去执行创建这个worker时就有的任务,当执行完这个任务后,worker的生命周期并没有结束,在while循环中,worker会不断地调用getTask方法从阻塞队列中获取任务然后调用task.run()执行任务,从而达到复用线程的目的。只要getTask方法不返回null,此线程就不会退出。

当然,核心线程池中创建的线程想要拿到阻塞队列中的任务,先要判断线程池的状态,如果STOP或者TERMINATED,返回null

最后看看getTask方法的实现:

// Worker.getTask方法源码
private Runnable getTask() {boolean timedOut = false; // Did the last poll() time out?for (;;) {int c = ctl.get();int rs = runStateOf(c);// Check if queue empty only if necessary.if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {decrementWorkerCount();return null;}int wc = workerCountOf(c);// Are workers subject to culling?// 1.allowCoreThreadTimeOut变量默认是false,核心线程即使空闲也不会被销毁// 如果为true,核心线程在keepAliveTime内仍空闲则会被销毁。 boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;// 2.如果运行线程数超过了最大线程数,但是缓存队列已经空了,这时递减worker数量。 // 如果有设置允许线程超时或者线程数量超过了核心线程数量,// 并且线程在规定时间内均未poll到任务且队列为空则递减worker数量if ((wc > maximumPoolSize || (timed && timedOut))&& (wc > 1 || workQueue.isEmpty())) {if (compareAndDecrementWorkerCount(c))return null;continue;}try {// 3.如果timed为true(想想哪些情况下timed为true),则会调用workQueue的poll方法获取任务.// 超时时间是keepAliveTime。如果超过keepAliveTime时长,// poll返回了null,上边提到的while循序就会退出,线程也就执行完了。// 如果timed为false(allowCoreThreadTimeOut为false// 且wc > corePoolSize为false),则会调用workQueue的take方法阻塞在当前。// 队列中有任务加入时,线程被唤醒,take方法返回任务,并执行。Runnable r = timed ?workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :workQueue.take();if (r != null)return r;timedOut = true;} catch (InterruptedException retry) {timedOut = false;}}
}

核心线程的会一直卡在workQueue.take方法,被阻塞并挂起,不会占用CPU资源,直到拿到Runnable 然后返回(当然如果allowCoreThreadTimeOut设置为true,那么核心线程就会去调用poll方法,因为poll可能会返回null,所以这时候核心线程满足超时条件也会被销毁)。

非核心线程会workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) ,如果超时还没有拿到,下一次循环判断compareAndDecrementWorkerCount就会返回null,Worker对象的run()方法循环体的判断为null,任务结束,然后线程被系统回收 。

3 四种常见的线程池

Executors类中提供的几个静态方法来创建线程池。大家到了这一步,如果看懂了前面讲的ThreadPoolExecutor构造方法中各种参数的意义,那么一看到Executors类中提供的线程池的源码就应该知道这个线程池是干嘛的。

3.1 newCachedThreadPool

public static ExecutorService newCachedThreadPool() {return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue());
}

CacheThreadPool运行流程如下:

  1. 提交任务进线程池。
  2. 因为corePoolSize为0的关系,不创建核心线程,线程池最大为Integer.MAX_VALUE。
  3. 尝试将任务添加到SynchronousQueue队列。
  4. 如果SynchronousQueue入列成功,等待被当前运行的线程空闲后拉取执行。如果当前没有空闲线程,那么就创建一个非核心线程,然后从SynchronousQueue拉取任务并在当前线程执行。
  5. 如果SynchronousQueue已有任务在等待,入列操作将会阻塞。

当需要执行很多短时间的任务时,CacheThreadPool的线程复用率比较高, 会显著的提高性能。而且线程60s后会回收,意味着即使没有任务进来,CacheThreadPool并不会占用很多资源。

3.2 newFixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads) {return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue());
}

核心线程数量和总线程数量相等,都是传入的参数nThreads,所以只能创建核心线程,不能创建非核心线程。因为LinkedBlockingQueue的默认大小是Integer.MAX_VALUE,故如果核心线程空闲,则交给核心线程处理;如果核心线程不空闲,则入列等待,直到核心线程空闲。

与CachedThreadPool的区别:

  • 因为 corePoolSize == maximumPoolSize ,所以FixedThreadPool只会创建核心线程。 而CachedThreadPool因为corePoolSize=0,所以只会创建非核心线程。
  • 在 getTask() 方法,如果队列里没有任务可取,线程会一直阻塞在 LinkedBlockingQueue.take() ,线程不会被回收。 CachedThreadPool会在60s后收回。
  • 由于线程不会被回收,会一直卡在阻塞,所以没有任务的情况下, FixedThreadPool占用资源更多。
  • 都几乎不会触发拒绝策略,但是原理不同。FixedThreadPool是因为阻塞队列可以很大(最大为Integer最大值),故几乎不会触发拒绝策略;CachedThreadPool是因为线程池很大(最大为Integer最大值),几乎不会导致线程数量大于最大线程数,故几乎不会触发拒绝策略。

3.3 newSingleThreadExecutor

public static ExecutorService newSingleThreadExecutor() {return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue()));
}

有且仅有一个核心线程( corePoolSize == maximumPoolSize=1),使用了LinkedBlockingQueue(容量很大),所以,不会创建非核心线程。所有任务按照先来先执行的顺序执行。如果这个唯一的线程不空闲,那么新来的任务会存储在任务队列里等待执行。

3.4 12.3.4 newScheduledThreadPool

创建一个定长线程池,支持定时及周期性任务执行。

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {return new ScheduledThreadPoolExecutor(corePoolSize);
}//ScheduledThreadPoolExecutor():
public ScheduledThreadPoolExecutor(int corePoolSize) {super(corePoolSize, Integer.MAX_VALUE,DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,new DelayedWorkQueue());
}

四种常见的线程池基本够我们使用了,但是《阿里巴巴开发手册》不建议我们直接使用Executors类中的线程池,而是通过ThreadPoolExecutor的方式,这样的处理方式让写的同学需要更加明确线程池的运行规则,规避资源耗尽的风险。

但如果你及团队本身对线程池非常熟悉,又确定业务规模不会大到资源耗尽的程度(比如线程数量或任务队列长度可能达到Integer.MAX_VALUE)时,其实是可以使用JDK提供的这几个接口的,它能让我们的代码具有更强的可读性。

相关内容

热门资讯

linux入门---制作进度条 了解缓冲区 我们首先来看看下面的操作: 我们首先创建了一个文件并在这个文件里面添加了...
C++ 机房预约系统(六):学... 8、 学生模块 8.1 学生子菜单、登录和注销 实现步骤: 在Student.cpp的...
JAVA多线程知识整理 Java多线程基础 线程的创建和启动 继承Thread类来创建并启动 自定义Thread类的子类&#...
【洛谷 P1090】[NOIP... [NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G ...
国民技术LPUART介绍 低功耗通用异步接收器(LPUART) 简介 低功耗通用异步收发器...
城乡供水一体化平台-助力乡村振... 城乡供水一体化管理系统建设方案 城乡供水一体化管理系统是运用云计算、大数据等信息化手段࿰...
程序的循环结构和random库...   第三个参数就是步长     引入文件时记得指明字符格式,否则读入不了 ...
中国版ChatGPT在哪些方面... 目录 一、中国巨大的市场需求 二、中国企业加速创新 三、中国的人工智能发展 四、企业愿景的推进 五、...
报名开启 | 共赴一场 Flu... 2023 年 1 月 25 日,Flutter Forward 大会在肯尼亚首都内罗毕...
汇编00-MASM 和 Vis... Qt源码解析 索引 汇编逆向--- MASM 和 Visual Studio入门 前提知识ÿ...
【简陋Web应用3】实现人脸比... 文章目录🍉 前情提要🌷 效果演示🥝 实现过程1. u...
前缀和与对数器与二分法 1. 前缀和 假设有一个数组,我们想大量频繁的去访问L到R这个区间的和,...
windows安装JDK步骤 一、 下载JDK安装包 下载地址:https://www.oracle.com/jav...
分治法实现合并排序(归并排序)... 🎊【数据结构与算法】专题正在持续更新中,各种数据结构的创建原理与运用✨...
在linux上安装配置node... 目录前言1,关于nodejs2,配置环境变量3,总结 前言...
Linux学习之端口、网络协议... 端口:设备与外界通讯交流的出口 网络协议:   网络协议是指计算机通信网...
Linux内核进程管理并发同步... 并发同步并发 是指在某一时间段内能够处理多个任务的能力,而 并行 是指同一时间能够处理...
opencv学习-HOG LO... 目录1. HOG(Histogram of Oriented Gradients,方向梯度直方图)1...
EEG微状态的功能意义 导读大脑的瞬时全局功能状态反映在其电场结构上。聚类分析方法一致地提取了四种头表面脑电场结构ÿ...
【Unity 手写PBR】Bu... 写在前面 前期积累: GAMES101作业7提高-实现微表面模型你需要了解的知识 【技...