Yolov5 (v6.2) 使用自己的数据训练分类模型 基于ONNX TensorRT转换
创始人
2025-05-29 08:32:39
0

前言

之前文章已经讲过yolov5模型的训练,这一篇将说一下分类模型训练流程。
https://blog.csdn.net/qq_45066628/article/details/129470290

新版本简介

YOLOv5官方发布了v6.2版本,v6.2版本支持分类模型训练、验证、预测和导出;v6.2版本的推出使得训练分类器模型变得超级简单!

v6.2版本项目结构并无太大改变,主要是增加了classify文件夹以及predict.py train.py val.py 这三个文件;那么这三个文件也分别对应着分类模型的推理、训练和验证。
在这里插入图片描述

训练前准备工作🌟

模型下载

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -qr requirements.txt

数据准备

这里数据集采用kaggle猫狗大战数据集
在这里插入图片描述
数据集下载地址:https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data
在这里插入图片描述

划分数据集

分类模型无需标注数据,只需要将训练的图片按类别文件夹划分即可

格式如下🍀:

在这里插入图片描述
示例:
在这里插入图片描述
划分脚本:

import os
from shutil import copy
import randomdef mkfile(file):if not os.path.exists(file):os.makedirs(file)# 获取data文件夹下所有文件夹名(即需要分类的类名)
file_path = '../test_set/'
flower_class = [cla for cla in os.listdir(file_path)]# 创建 训练集train 文件夹,并由类名在其目录下创建5个子目录
mkfile('data/train')
for cla in flower_class:mkfile('data/train/' + cla)# 创建 验证集val 文件夹,并由类名在其目录下创建子目录
mkfile('data/val')
for cla in flower_class:mkfile('data/val/' + cla)# 划分比例,训练集 : 验证集 = 8 : 2
split_rate = 0.2# 遍历所有类别的全部图像并按比例分成训练集和验证集
for cla in flower_class:cla_path = file_path + '/' + cla + '/'  # 某一类别的子目录images = os.listdir(cla_path)  # iamges 列表存储了该目录下所有图像的名称num = len(images)eval_index = random.sample(images, k=int(num * split_rate))  # 从images列表中随机抽取 k 个图像名称for index, image in enumerate(images):# eval_index 中保存验证集val的图像名称if image in eval_index:image_path = cla_path + imagenew_path = 'data/val/' + clacopy(image_path, new_path)  # 将选中的图像复制到新路径# 其余的图像保存在训练集train中else:image_path = cla_path + imagenew_path = 'data/train/' + clacopy(image_path, new_path)print("\r[{}] processing [{}/{}]".format(cla, index + 1, num), end="")  # processing barprint()print("processing done!")

下载权重文件

下载地址:https://github.com/ultralytics/yolov5
在这里插入图片描述
不同文件,使用产生的效果也不一样,这里使用YOLOv5s-cls

修改配置文件

到classify文件夹下,修改train.py
在这里插入图片描述
第一行设置自己下载的权重文件路径,第二行设置数据集路径,其余参数可根据自行需要修改。

开始训练🚀

  1. 方法一:
    运行classify下的train.py文件,这里由于cuda问题,暂时选用cpu进行训练演示。
    在这里插入图片描述
    运行后这里缺失模块产生了一个报错,若没有跳过,解决方法:

    pip install --upgrade protobuf

    然后重新运行train.py文件
    在这里插入图片描述

  2. 方法二:

    python classify/train.py --model yolov5s-cls.pt --data datasets/data–epochs 100 --batch-size 32 --imgsz 224

训练完成后,会在runs文件夹下看到模型
在这里插入图片描述

验证和推理

验证

  1. 方法一:

    python classify/val.py --weights runs/train-cls/exp4/weights/best.pt --data datasets/data

  2. 方法二:
    到classify文件夹下,修改val.py
    在这里插入图片描述
    第一行使用自己训练的模型文件,第二行修改数据集路径,其余参数可根据自行需要修改。

验证结果:
输出类别和正确率信息
在这里插入图片描述

推理

方法与上述类似,该文件或直接使用命令行

# 测试im1.jpg
python classify/predict.py --weights runs/train-cls/exp4/weights/best.pt --source im1.jpg# 测试im2.jpg
python classify/predict.py --weights runs/train-cls/exp4/weights/best.pt --source im2.jpg

推理结果:
可以到runs文件夹下的predict-cls文件夹下查看结果

在这里插入图片描述
在这里插入图片描述

导出

使用ONNX

执行命令导出onnx:

python export.py --weights runs/train-cls/exp4/weights/best.pt --include onnx

输出:

Detect: python classify/predict.py --weights runs/train-cls/exp4/weights/best.onnx
Validate: python classify/val.py --weights runs/train-cls/exp4/weights/best.onnx
PyTorch Hub: model = torch.hub.load(‘ultralytics/yolov5’, ‘custom’, ‘runs/train-cls/exp4/weights/best.onnx’) # WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference
Visualize: https://netron.app

使用TensorRT

执行命令导出engine:

python export.py --weights runs/train-cls/exp4/weights/best.pt --include engine --device 0

输出:

Detect: python classify/predict.py --weights runs/train-cls/exp4/weights/best.engine
Validate: python classify/val.py --weights runs/train-cls/exp4/weights/best.engine
PyTorch Hub: model = torch.hub.load(‘ultralytics/yolov5’, ‘custom’, ‘runs/train-cls/exp/weights/best.engine’) # WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference
Visualize: https://netron.app

相关内容

热门资讯

linux入门---制作进度条 了解缓冲区 我们首先来看看下面的操作: 我们首先创建了一个文件并在这个文件里面添加了...
C++ 机房预约系统(六):学... 8、 学生模块 8.1 学生子菜单、登录和注销 实现步骤: 在Student.cpp的...
JAVA多线程知识整理 Java多线程基础 线程的创建和启动 继承Thread类来创建并启动 自定义Thread类的子类&#...
【洛谷 P1090】[NOIP... [NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G ...
国民技术LPUART介绍 低功耗通用异步接收器(LPUART) 简介 低功耗通用异步收发器...
城乡供水一体化平台-助力乡村振... 城乡供水一体化管理系统建设方案 城乡供水一体化管理系统是运用云计算、大数据等信息化手段࿰...
程序的循环结构和random库...   第三个参数就是步长     引入文件时记得指明字符格式,否则读入不了 ...
中国版ChatGPT在哪些方面... 目录 一、中国巨大的市场需求 二、中国企业加速创新 三、中国的人工智能发展 四、企业愿景的推进 五、...
报名开启 | 共赴一场 Flu... 2023 年 1 月 25 日,Flutter Forward 大会在肯尼亚首都内罗毕...
汇编00-MASM 和 Vis... Qt源码解析 索引 汇编逆向--- MASM 和 Visual Studio入门 前提知识ÿ...
【简陋Web应用3】实现人脸比... 文章目录🍉 前情提要🌷 效果演示🥝 实现过程1. u...
前缀和与对数器与二分法 1. 前缀和 假设有一个数组,我们想大量频繁的去访问L到R这个区间的和,...
windows安装JDK步骤 一、 下载JDK安装包 下载地址:https://www.oracle.com/jav...
分治法实现合并排序(归并排序)... 🎊【数据结构与算法】专题正在持续更新中,各种数据结构的创建原理与运用✨...
在linux上安装配置node... 目录前言1,关于nodejs2,配置环境变量3,总结 前言...
Linux学习之端口、网络协议... 端口:设备与外界通讯交流的出口 网络协议:   网络协议是指计算机通信网...
Linux内核进程管理并发同步... 并发同步并发 是指在某一时间段内能够处理多个任务的能力,而 并行 是指同一时间能够处理...
opencv学习-HOG LO... 目录1. HOG(Histogram of Oriented Gradients,方向梯度直方图)1...
EEG微状态的功能意义 导读大脑的瞬时全局功能状态反映在其电场结构上。聚类分析方法一致地提取了四种头表面脑电场结构ÿ...
【Unity 手写PBR】Bu... 写在前面 前期积累: GAMES101作业7提高-实现微表面模型你需要了解的知识 【技...