背包问题动态规划编程题集合(leetcode)
创始人
2025-05-30 17:52:24
0

动态规划步骤

确认dp数组含义,求递推公式,进行dp数组初始化,遍历顺序,打印

01背包问题,每件物品只有一样,我们的选择是拿或者不拿;于完全背包问题,每件物品有无数个,同样求解将哪些物品放入背包中,可以使得背包放入物品的总价值最大:

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。

根据数组的长度 nn 判断数组是否可以被划分。如果 n<2,则不可能将数组分割成元素和相等的两个子集,因此直接返回 false。计算整个数组的元素和sum如果 sum 是奇数,则不可能将数组分割成元素和相等的两个子集,因此直接返回 false。如果sum 是偶数,则令 target= sum/2,需要判断是否可以从数组中选出一些数字,使得这些数字的和等于target。在这里nums数组中的每个值都相当于背包问题的重量和价值,如果最大价值等于target则就可以划分两个子集。

  public boolean canPartition(int[] nums) {if(nums.length<2)return false;int sum = Arrays.stream(nums).sum();if(sum%2!=0)return false;int target = sum / 2;int[][] dp=new int[nums.length+1][target+1];for(int i=1;ij)dp[i][j]=dp[i-1][j];elsedp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-nums[i-1]]+nums[i-1]);}}return dp[nums.length][target]==target;}

给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

引用官方图片

class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int num : nums) {sum += num;}int diff = sum - target;if (diff < 0 || diff % 2 != 0) {return 0;}int n = nums.length, neg = diff / 2;int[][] dp = new int[n + 1][neg + 1];dp[0][0] = 1;for (int i = 1; i <= n; i++) {int num = nums[i - 1];for (int j = 0; j <= neg; j++) {dp[i][j] = dp[i - 1][j];if (j >= num) {dp[i][j] += dp[i - 1][j - num];}}}return dp[n][neg];}
}作者:LeetCode-Solution
链接:https://leetcode.cn/problems/target-sum/solution/mu-biao-he-by-leetcode-solution-o0cp/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

完全背包

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
 public int change(int amount, int[] coins) {int[][] dp=new int[coins.length+1][amount+1];dp[0][0]=1;for (int i=1;i

相关内容

热门资讯

linux入门---制作进度条 了解缓冲区 我们首先来看看下面的操作: 我们首先创建了一个文件并在这个文件里面添加了...
C++ 机房预约系统(六):学... 8、 学生模块 8.1 学生子菜单、登录和注销 实现步骤: 在Student.cpp的...
JAVA多线程知识整理 Java多线程基础 线程的创建和启动 继承Thread类来创建并启动 自定义Thread类的子类&#...
【洛谷 P1090】[NOIP... [NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G ...
国民技术LPUART介绍 低功耗通用异步接收器(LPUART) 简介 低功耗通用异步收发器...
城乡供水一体化平台-助力乡村振... 城乡供水一体化管理系统建设方案 城乡供水一体化管理系统是运用云计算、大数据等信息化手段࿰...
程序的循环结构和random库...   第三个参数就是步长     引入文件时记得指明字符格式,否则读入不了 ...
中国版ChatGPT在哪些方面... 目录 一、中国巨大的市场需求 二、中国企业加速创新 三、中国的人工智能发展 四、企业愿景的推进 五、...
报名开启 | 共赴一场 Flu... 2023 年 1 月 25 日,Flutter Forward 大会在肯尼亚首都内罗毕...
汇编00-MASM 和 Vis... Qt源码解析 索引 汇编逆向--- MASM 和 Visual Studio入门 前提知识ÿ...
【简陋Web应用3】实现人脸比... 文章目录🍉 前情提要🌷 效果演示🥝 实现过程1. u...
前缀和与对数器与二分法 1. 前缀和 假设有一个数组,我们想大量频繁的去访问L到R这个区间的和,...
windows安装JDK步骤 一、 下载JDK安装包 下载地址:https://www.oracle.com/jav...
分治法实现合并排序(归并排序)... 🎊【数据结构与算法】专题正在持续更新中,各种数据结构的创建原理与运用✨...
在linux上安装配置node... 目录前言1,关于nodejs2,配置环境变量3,总结 前言...
Linux学习之端口、网络协议... 端口:设备与外界通讯交流的出口 网络协议:   网络协议是指计算机通信网...
Linux内核进程管理并发同步... 并发同步并发 是指在某一时间段内能够处理多个任务的能力,而 并行 是指同一时间能够处理...
opencv学习-HOG LO... 目录1. HOG(Histogram of Oriented Gradients,方向梯度直方图)1...
EEG微状态的功能意义 导读大脑的瞬时全局功能状态反映在其电场结构上。聚类分析方法一致地提取了四种头表面脑电场结构ÿ...
【Unity 手写PBR】Bu... 写在前面 前期积累: GAMES101作业7提高-实现微表面模型你需要了解的知识 【技...